If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+6x-21=0
a = 20; b = 6; c = -21;
Δ = b2-4ac
Δ = 62-4·20·(-21)
Δ = 1716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1716}=\sqrt{4*429}=\sqrt{4}*\sqrt{429}=2\sqrt{429}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{429}}{2*20}=\frac{-6-2\sqrt{429}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{429}}{2*20}=\frac{-6+2\sqrt{429}}{40} $
| F(3)=3+6x | | 3(x+2=2x | | 4(4s+3)=188 | | 6x+3=5(3x+9) | | 16+-4y=44 | | 3(2h+8)=-24-7h | | 0=-16t^2+56t+72 | | -24=7(6v-2) | | x+21=2x+6 | | x+7x-2x=10-7+2x+10 | | 4=24/3x | | 8k=40=16 | | 3x–2=23+8x | | 7-7x=6x-8 | | 2(6+-2y)+4y=12 | | -7/4+x/4=2 | | X4-3x=54 | | 1/2t-3=1/4t-9 | | 7x+14=5x+2 | | 0.2(10x+18)=4.2(0.2x+5) | | 4-5x=3(2x-5) | | 4-5x=6x-5 | | 400=20d87d | | -3.7+z=14.1 | | 2x+x=6x-10 | | 12=5m+3÷4 | | 23k=6.9 | | 14(x-2)=132-281(x) | | 5u+14=104 | | 8+2x-x=14 | | y=-6+54 | | X2+10x+5=-10 |